Received: June 25, 1986; accepted: October 12, 1986

PERFLUOROTHIOALKANOYL HALIDES. PREPARATION FROM SULFIDES

THOAI NGUYEN and CLAUDE WAKSELMAN

CNRS-CERCOA

2, Rue Henri Ounant 94320 Thiais (France)

SUMMARY

Perfluorothioalkanoyl halides were generated from alkyl perfluoroalkyl sulfides by reaction with TiF₄, TiCl₄ or C1SO₃H. The alkyl groups were benzyl or methyl, the former was more suitable. An a-bromoperfluoroalkyl**sulfide gave a perfluorothioalkanoyl halide more easily than the corresponding d-chloro sulfide which gave the thioalkanoyl chloride. An exchange** between the **x**-halogen atom X of the sulfide R_FCFXSR_H (X=Cl, Br) and the **halogen atom of the Lewis acid can occur.**

INTRODUCTION

An elegant way of access to perfluoroalkanoyl fluorides was the reaction of Lewis acid with perfluoroalkyl methyl ethers^[1]. TiF₄ was the **most practical Lewis acid for this purpose. The mechanism proposed for this reaction was an abstraction of fluorine from the C-F bond giving the acid fluoride, a metal fluoride anion, and a methyl cation. The last two ions unite to give methyl fluoride.**

$$
\text{Tr}_{\text{A}} + R_{\text{F}} - \text{CF}_{2} \text{OCH}_{3} \rightarrow R_{\text{F}} \text{C}(0) \text{F} + \text{Tr}_{\text{F}_{3}} \text{F} + \text{CH}_{3} \text{F} \rightarrow R_{\text{F}} \text{C}(0) \text{F} + \text{CH}_{3} \text{F} + \text{Tr}_{\text{A}} \text{F}
$$

Based upon the ability of the sulfur atom to give a sulfonium ion, question arises about the possible extension of this reaction to sulfides for the preparation of perfluorothioalkanoyl halides.

 $Tif_{4} + R_{F}-CFX-SR_{H} \longrightarrow Tif_{4} + R_{H}F + R_{F}C(S)X$; X=halogen **0022-1139/87/\$3.50 0 Elsevier Sequoia/Printed in The Netherlands**

Not many studies have been made on the preparation of perfluorothio alkanoyl halides. Generally they are generated[?]by reactions of sulfur or of P₂S_E, at a temperature up to 500°C, with perfluoroalkyl mercury **compounds, with perhalogenoethylenes CF2 = CX2 (X = F,Cl,Br,I) or with polyhalogeno-perfluoroalkanes RFCFX7. RFCX3 (X = Cl, Br, I). These reactions were not always simple. Thus, the transformation of sulfides into the thiocarbonyl halides would be interesting, since fluorinated alkyl** sulfides were easily obtained^[3].

RESULTS

We started our study with benzyl perfluorobutyl sulfide 1[3b]. TiF_A was inactive. C1SO₃H or concentrated sulfuric acid led to benzyl**thioperfluorobutyrate 12. The sulfide was simply hydrolysed[4].**

$$
R_F CF_2 SR_H \longrightarrow R_F C(0) SR_H. \quad ; R_F = C_3 F_7
$$

The breaking of the alkylsulfur bond, R_{H} \$S, leading to a thiocarbonyl**halide did not occur. For this purpose, it seems that two factors ought to** be satisfied : the ease of the alkyl group R_u to give the cation **R"+> as would do the benzyl group, and the ability of the sulfur** atom to leave its electron pair. The perfluoroalkyl group R_F-CF₂, by its **attractive effect, retains tightly the sulfur doublet in the sulfur** electronic cloud, the substitution of an a-fluorine atom by another halogen **(Cl, Br) will make easier the formation of a donor-acceptor complex between the sulfide and the Lewis acid.**

Benzyl l-chloroperfluoroethyl sulfide 2 was then prepared [3b) and tried. When, this sulfide, mixed with TiF_A, was heated to about 100°C, a red liquid distilled. It was identified as trifluorothioacetyl chloride 8^[2]. **It subsequently gave diethylamino trifluorothioacetamide CF3C(S)N(C2H5);** [sJ **in 47% yield. The residue in the pot was tar. The benzyl l-bromoperfluoro**ethyl sulfide 3 was yet more reactive than the 1-chloro derivative 2. It gave the unknown trifluorothioacetyl bromide **9** CF₃C(S)Br. Gentle heating **to about 60°C was enough to split the benzyl sulfur bond. The reaction was** autocatalytic; less than a stoichiometric amount of TiF₄ can be used.

Methyl sulfides were less reactive than the benzyl derivatives. Compound 4 CF₃CFClSCH₃ did not react, but compound 5 CF₃CFBrSCH₃ did.

524

Tic14 was also efficient as a catalyst, but the reactions were complicated by a possible exchange between the chlorine atom of TiCl₄ and **the halogen atom of the sulfide. For example compound 2 gave a l/l mixture of trifluorothioacetyl chloride 8 and trifluorothioacetyl bromide 2;** compound *I* CF₂BrCFBrSCH₂C₆H₅ gave the bromodifluorothioacetyl chloride 15 CF₂BrC(S)Cl. The reactions with SbF₅ were violent and a lot of tar **resulted.**

The table summarizes the results obtained with some typical sulfides. The reactions were carried out with TiF_4 , TiCl_4 and CISO_3H .

TABLE

According to the table, benzyl sulfides were more suitable than methyl sulfides in the process of R_u-S-S splitting, as also did the **x**-bromosulfides 3, 5, 7, as compared with the **a**chloro sulfides 2, 4, 6. The fact **that a thioacyl chloride was obtained along with a thioacyl bromide when an c**+bromosulfide was used with TiCl_a, can be accounted for by the formation of **a complex between this sulfide and the Lewis acid, which allowed a Br** \rightarrow **Cl exchange to occur** :

$$
\begin{array}{c}\n\oplus \\
R_f \subset \text{FBrsR}_H + \text{TiCl}_4 \rightleftharpoons R_f \subset F = S - R_H \rightleftharpoons R_f \subset \text{FCISR}_H + \text{TiBrCl}_3 \\
\oplus \\
\downarrow \qquad \qquad \downarrow \q
$$

The complex A did not split, since in no case, was perfluorothioalkanoyl fluoride trapped.

EXPERIMENTAL

IH NMR and IgF NMR spectra were recorded on a Varian EM360 instrument at 60MHz and 56.4 MHz with TMS and CFC1₂ as external standards. Measurements were done on 10-20% solutions in CDC1₃. (s = **singlet, d = doublet, t = triplet, q = quadruplet, dxd doublet of doublets).**

Benzyl 1-bromotetrafluoroethyl sulfide 2

log (67mM) of benzylthiocyanate, 6g (103mM) of potassium fluoride, 8ml of sulfolane were introduced in a stainless steel autoclave together with 129 (74.5mM) of bromotrifluoroethylene. The autoclave was closed and heated at 120°C during two days. After cooling to room temperature the autoclave's content was poured into lOOm1 of water, extracted with methylene chloride and dried. The solvent was removed, the residue was distilled under reduced pressure. 139 (39mM) of compound 2 were obtained b.p.:95°C; ¹H NMR (ppm), δ :4.2 (CH₂,s), 7.3 (C₆H₅,s), ¹⁹F NMR (ppm), ϕ : $-76(CF_3,d, J = 12Hz)$, $-97(CFBr, q)$.

Methyl 1-chlorotetrafluoroethyl sulfide 4

369 (49mM) of methylthiocyanate, 6g (103mM) of potassium fluoride, 8ml of sulfolane, 8ml of methylene chloride, were introduced into a stainless steel autoclave together with 9g (77mM) of chlorotrifluoroethylene. The autoclave was heated at 120°C and agitated for two days. After cooling to room temperature the content of the autoclave was distilled. 5.59 (397mM) of 2 was obtained b.p.:72°C; yield 51%. ¹H NMR (ppm); δ :2.5 (CH₃,s); ¹⁹F **NMR** (ppm), \oint :-79 (CF₃,d,J = 9Hz); -101.5 (CFC1, q); Anal. Calcd. for **C3H3C1F4S : C, 19.73; H, 1.65; Cl, 19.45; F, 41.63; Found : C, 19.99; H, 1.72; Cl, 20.15; F, 41.83.**

Methyl I-bromotetrafluoroethyl sulfide 5

The same procedure was used. Starting from 4.49 (60mM) of methyl thiocyanate, 6g (103mM) of potassium fluoride, 8ml of sulfolane and 11.59 (71.4mM) of bromotrifluoroethylene, 7.59 (33mM) of 2 was obtained. b.p.:90°C; yield 46%. ¹H NMR (ppm), δ : 2.5 (CH₃,s); ¹⁹F NMR (ppm), \oint :-77 (CF₃,d, J = 12Hz); -100 (CFBr, q); Anal. Calcd. for **C3H3BrF4S: C, 15.88; H,1.33; Found** : **C,16.03; H, 1.37.**

Benzyl-trifluorovinyl sulfide 16 (nc)

64ml of butyllithium (1.2N in hexane), 30ml of anhydrous tetrahydrofuran THF were cooled at -70°C in a three-necked flask. Under nitrogen and with stirring gg (77mM) of chlorotrifluoroethylene were bubbled into the mixture. A solution of trifluorovinyllithium ^[9] was introduced portion wise **under mechanical stirring into a solution of 7g (46.9mM) of benzylthiocyanate in 25ml of anhydrous THF. The temperature was kept around -15°C. After an hour, the cooled bath was removed, and the dark solution was acidified by dilute sulfuric acid, washed with brine and dried. After removal of the solvent, the residue was distilled under reduced pressure. 129 (58mM) of 16 was obtained. b.p.:80°-85"C/15 Torr; yield** : 49%. **lH NMR** (ppm), δ :3.8 (CH₂,s); 7.15 (C₆H₅,s); ¹⁹F NMR (ppm), Φ : -87 **(CF,dxd, J = 50 and 35Hz); -107 (CF,dxd, J = 130Hz); -149.5 (CF,dxd); Anal.** Calcd. for C_qH₇F₃S: C, 52.96; H, 3.45; F, 27.92; Found : C, 53.00; H, **3.44; F, 27.63.**

Benzyl 1,2- dichloro-trifluoroethyl sulfide 6 (nc)

3g (42.2mM) of chlorine were bubbled into a solution of 7g (34.3mM) of 16 in 100ml of methylene chloride cooled to -15°C. The solvent was removed **under reduced pressure. 9g (32.7mM) of 5 were distilled from the residue, b.p.:100°C/15 Torr; yield 95%.** ¹H NMR (ppm), $\boldsymbol{\delta}$:4.1 (CH₂,s); 7.25(C₆H₅,s); ¹⁹F NMR (ppm), Φ :-63 (CF₂Cl,d, J = 14Hz); -91 (CFCl,t); MS : m/e 275,277, M^{+} ; 91, $C_{6}H_{6}CH_{2}^{+}$.

Benzyl 1,2-dibromotrifluoroethyl sulfide 7 (nc)

A solution of 3.13g (19.6mM) of bromine in 5ml of CCl_A was added dropwise at 0°C into a solution of 4g (19.6mM) of 16 in 5ml of CCl₄. After **half an hour the solution was washed with water, dried, and distilled under** reduced pressure. 6.4g of 7 (17.6mM) were obtained b.p.:123°C/5 Torr; yield 90%; ¹H NMR (ppm), $\delta:4.37$ (CH₂,s); 7.45 (C₆H₅,s); ¹⁹F NMR (ppm), **4:-53.5 (CF2Br,d, J = 20Hz); -87 (CFBr,t).MS:m/e 253, 255,257, CFBrCFBr 173,175,** \sim s \times **CFBr-CF; 91, C₆H₅CH₂ .**

Reaction of sulfides with TiF, - general procedure.

A mixture of sulfide and anhydrous TiF_A in stoTchiometric amounts was **heated on an oil bath. When the reaction occurred, gas was evolved and the thioacyl halide distilled as a red liquid. It was trapped in a receiver** cooled by a dry ice-acetone mixture. Diluted in CH₂C1₂ it was identified **by NMR and mass spectra and was subsequently converted into thioamide by reaction with diethylamine.**

Trifluorothioacetyl chloride 8 121 Red liquid b.p.:28"C; "F NMR (ppm),(b:-69.5; MS:m/e 148,15O,M+.

Diethylamino trifluoro thioacetamide[5] @:- 61, Anal. Calcd. for C6H10F3NS : **C,38.74; H, 5.42; N,7.52; Found:** ¹H NMR (ppm), δ :1.25 (CH₃,t,7Hz); 3.8 (CH₂,q); ¹⁹F NMR (ppm), **C, 38.74; H, 5.52; N,7.36.**

Trifluorothioacetyl bromide 9 (ncl Red liquid b.p.:45°C; ¹⁹F NMR (ppm), ϕ :-68 MS:m/e 192,194, M⁺.

Chlorodifluorothioacetyl chloride lO[7] Red liquid b.p.:56°C (lit.E₂₀ -10°C); ¹⁹F NMR (ppm), ϕ :-53. **UV** : h_{max} : =505nm, $\xi = 11$ (lit. 500nm) (CH₂C1₂ large).

Bromodifluorothioacetyl bromide 11 (nc) **Red liquid b.p.:75°C,** 19 **F NMR (ppm),** Φ **:48; MS :m/e 252,254, 256, M⁺.**

Diethylamino bromodifluorothioacetamide (nc)

lH KMR (ppm), 6: 1.45 (CH3,t,J = 7Hz); 4.05 (CH2,q); "F NMR (ppm), ϕ :-43; Anal. Calcd. for C₆H₁₀BrF₂NS : C,29.29; H,4.09; N, **5.69. Found : C, 29.85; H, 4.26; N, 5.51.**

Diethylamino chlorodifluorothioacetamide (nc)

b.p.:110°C/15 Torr ¹H NMR (ppm), 6:1.35 (CH₃,t, J = 6Hz); 3.9(CH₂,q); ¹⁹F NMR (ppm), ϕ :-46; Anal. Calcd. for $c_6H_{10}C1F_2$ NS: C, 35.75; H, **5.00; N, 6.94; Found : C, 35.78; H, 5.35; N, 6.53.**

Reaction of sulfides with Tic14

By using the same method as with Tr_{4} , compound 3 gave a $1/1$ mixture of 8 / 9. yield 71%. Compound 7 gave a 2 / 8 mixture of 11 / 15.

Bromodifluorothioacetyl chloride 15 $\frac{19}{19}$ NMR (ppm), Φ :-49.5; MS : m/e 208, 210, 212, M⁺.

Reaction of sulfides with chlorosulfonic acid-general procedure

5mM of sulfide were dissolved in 8ml of methylene chloride and cooled at 0°C. 8mM of chlorosulfonic acid dissolved in 4ml of methylene chloride were introduced dropwise with stirring. 5ml of pentane were then added. The upper layer was separated, washed with water and dried. The "F NMR of this solution gave the ratio of thioacyl halide over ester. Afterwards the halide was distilled with the solvent and converted into thioamide. The remaining benzylthioester was identified through its NMR spectrum by comparison with sample prepared from benzylmercaptan and the corresponding perfluoroalkanoyl chloride.

Benzylthio trifluoroacetate 13

19F NMR (ppm), ϕ **:-75 (CF3,s). b.p.:105°C/15 Torr;** ¹H NMR (ppm), δ :5(CH₂,s), 6.9 (C₆H₅,s);

Benzylthio heptafluorobutyrate 12

b.p.:SE°C/3 Torr; ¹H NMR (ppm), $6:3.7$ (CH₂,s); 7.34 (C₆H₅,s); ¹⁹F NMR $(ppm), \Phi$:-79 (CF₃,t, J = 8Hz), -116 (CF₂CO;q); -125 (CF₂).

Methylthio trifluoroacetate g, [S] b.p.:71°C; 'H NMR (ppm), ϕ :2.5 (CH₃,s); ''F NMR (ppm), ϕ :-76.5 (CF₃,s).

REFERENCES

1 D.C. England, J. Org. Chem., 49 (1984) 4007. 2 W.J. Middleton, E.G. Howard, W.H. Sharkey, J. Org. Chem., 30 (1965) 1375. 3 a) R.N. Haszeldine, B. Hewitson, A.E. Tipping, J. Chem. Sot. Perkin I, (1976) 1178. b) T. Nguyen, M. Rubinstein, C. Wakselman, J. Org. Chem., 46 (1981) 1938. c) I. Rico, C. Wakselman, J. Fluorine Chem., 20 (1982) 759. d) I. Rico, D. Cantacuzène, C. Wakselman, J. Org. Chem. 48 (1983) 1979. e) M. Suda, C. Hino, Terahedron Lett., 22 (1981) 1997. 4 R.C. Terrel, T. Ucciardi, J.F. Vitche, J. Org. Chem., 30 (1965) 4011. 5 Y.L. Yagupol'skii, B.K. Kerzhner, L.M. Yagupol'skii, Zh. Org. Khim., 12 (1976) 2213. H. Fritz, P. Hug. S.O. Lawesson. E. Logemann, B.S. Pedersen, H. Sauter, Bull. Soc. Chim. Belg. 87 (1978) 525. 6 R. Hershfield, G.L. Schwir, J. Am. Chem. Sot., 95 (1973) 3994. E. Bock, A. Queen, S. Brownlee, T.A. Nour, M.F. P. Row, Canad. J. Chem., 52 (1974) 3113. - 7 W.J. Middleton, U.S. Pat., 3 113 936 (1963). 8 D.C. England, L. Solomon, C.G. Krespan, J. Fluorine Chem., 2 (1973/74) 63. 9 J.F. Normant. J.P. Foulon, D. Masure, R. Sauvetre, J. Villieras,

Synthesis (1975) 122.